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Abstract

Total reaction rates and energy spectra of the generated particles
are discussed for fusion reactions in high energy plasmas.

Examples, discussed in some detail, concern elliptic and mono-

energetic velocity distributions of the plasma. One obtains energy
spectra with very typical shapes which should be useful for
diagnostic purposes. This is true in particular, of reactions

between different particles such as the d - t reaction.




1) Introduction

Measurements of both the total reaction rates and of the energy
spectra of the particles generated by nuclear reactions in hot
plamas may be an interesting source of information on the plasma.

A rather detailed discussion concerning the d(d,n) He3 reaction has
been given in /1/. Both d-d reactions are exceptions among fusion
reactions between light nuclei since they are highly anisotropic.
This fact offers another possibility of gaining information on the
plasma by measuring a possible anisotropy of the emitted neutron
flux (or of the emitted He3 flux, which however, cannot be measured
as easily). Some details concerning this anisotropy can be found

in /1/. The effect has also been demonstrated experimentally, and
its usefulness as a diagnostic tool has been shown /2,3/. In the
present report, however, we consider isotropic reactions only.

We do not specify at all the reaction considered, and we discuss
the general features of reaction rates and energy spectra for
plasmas with several typical velocity distributions of the ions.

The most interesting example of such a reaction, besides the d-d
reaction, is the d-t reaction, which will be dealt with in another
report /4/.

We consider a reaction of the following type:

A+B—>C+D + Q (1)

Q is the reaction energy. The masses of the particles are m,, my
Mes M. The reaction is assumed to be isotropic (in the centre-
of-mass system), and its total cross section is &(g), where g

is the relative velocity. We shall calculate the reaction rates for
given velocity distributions of the particles A and B and the
energy spectra of the generated particles C and D.

As in /1/, we shall consider various elliptic and monoenergetic
distributions for A and B as typical examples. We shall see that
the spectra may have very typical shapes, especially for reactions
between two different types of particles such as d and t.

The plasma is supposed to contain particles A and B with densities

n, and ng and velocity distribution functions fA and fB' which




are normalized to unity:
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We consider a pair of particles with velocities uA and14B,

relative velocity g and centre-of-mass velocity 3.
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is the reduced mass. The reaction rate is then
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Sometimes it proves useful to describe the plasma by elliptic
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distributions as
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We assume that both kinds of particles, A and B, have the

N\

same perpendicular temperature 71_ and the same parallel

temperature Ty . The product fA' fB , which is needed for

evaluating (8) may be written as follows:
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where both S and G are also elliptic and normalised to unity,

<() /%[MKIIM J//}O - JM AWI ) (12)

G (3)- —i@%wéw frg) o

M is the total mass,
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We shall also use three-dimensional monoenergetic distri-

butions like
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and two-dimensional monoenergetic distributions like
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In this case s and g do not separate as for elliptic

distributions. It is, however, useful to transform the product

fA°fB in the following manner:
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in the two-dimensional case.

2. Reaction Rates

(12),

For elliptic distributions we get from equations (8), (11)5

(13) after integration with respect to s
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Thus, for an isotropic Maxwellian
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The last two equations are most easily obtained by using
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In the general elliptic case equation (21) may be rewritten
as
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For a three-dimensional monoenergetic plasma equations (8), (17),

and (19) give
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In a similar manner, using equation(20) instead of equation
(19), we obtain the reaction rate for a two-dimensional mono-

energetic plasma
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The integrand diverges both at the lower and at the upper limit
of the integral. The integral itself is, of course, finite.
The special case U,=>Uoy= Ueg Dbrings us back to the simpler

result
U,
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which is used in /1/.

We may, for completeness, add the trivial one-dimensional

monoenergetic case, for which
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Another report /4/ will contain numérical results of the reaction

rates for several distribution functions concerning the d-t

reaction.




3. Energy spectra

Let us now discuss the more involved problem of the energy spectra.
As Q is the reaction energy the total energy available to both
particles generated by the reaction is, in the centre-of-mass

system,
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The fraction of energy given to the particle C, for instance, is
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where W7 , the velocity of particle C in the centre-of-mass system,

is a function of g.
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is its velocity in the laboratory system of reference. If Ec

is its energy in the laboratory system, the energy spectrum may
thus be written as

2 2 3
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To obtain this we rewrite equation (8) in the following form:
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where Jd L) is the solid angle differential in the laboratory

system.

We shall now give the results obtained by using several distri-
bution functions in (37) without going into the details of
derivation because these are, at least for some of the cases,

rather unwieldy and of little interest.

3a. Three-dimensional isotropic Maxwellian

In this case we have oo
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i.e. we are left with only one integration which cannot be

performed analytically. If, however, as we can assume for all

actual plasmas,

/g‘r X Cg " (39)

the spectrum (38) may be approximated by
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is the velocity particle C would have after a reaction between

(40)

two particles at rest in the centre-of-mass system. We see

that the energy spectrum is Gaussian with a half-width
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The half-width is symmetric with respect to particles C and D
i.e. it is the same for both particles:

AEC_"' AE,D = Ar__’;— (45)

Table 1 below gives AN E for some of the most important fusion

reactions.




TABLE 1:

A E for several fusion reactions

reaction Q (MeV) E (keV)
(kT in keV)
a(d,n) He3 8.27 82.5 (AT
a(a,p) > 4.04 o2 (&7
d(t,n)ue? 17.58 177\ &7
a(ue3,p)ne? 18.34 181 (4T

3b. Two-dimensional Maxwellian

The spectrum is given by .o
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Io is the modified Bessel function. The integration is not to
be extended over all values of g. Because S, = O for a

two-dimensional distribution
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The argument of Io is thus real. From (47) we get
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if positive
L () if the above expression is negative.

For kT € Q Io can be approximated by an exponential function,
and we get

d’R 2
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i.e. a Gaussian spectrum with the half-width
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where oL is the angle between the direction of observation and
the axis. Thus for the perpendicular direction we get the same
result as in the three-dimensional case, and towards the axis
the spectrum contracts as s8in©o¢ . This is, however, not true
for very small angles o/ . Our approximation is correct only if
the argument of I, is much larger than one, i.e. if

Sinat > |- (52)

For angles of that order of magnitude or smaller the spectrum

is no larger Gaussian and is now highly asymmetric.

The spectrum {46) may be integrated to give the reaction rate
(23) This can be done by using the relation

x)xc (. _p'x 1 (iax d
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which allows integration with respect to 12L . Integrating with

respect to VY, one has to take into account that
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3c. One-dimensional Maxwellian

In this case o0
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Integration with respect to ’U yields the total reactlon rate

as given by equation (24). For kT < ({ we can again approximate
the spectrum by
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and the half-width is now
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Thus for observation along the axis we again have the values of
AE_ = AE in Table 1. For larger angles the spectrum
shrinks as CO3x , where o should not be very close to 7’—/2_
i.e. cosol has to obey
cos o/ >> Y_:B;__I_— (57)
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3d. Three-dimensional monoenergetic Velocity distributions

In this case integration can be shown to give

dR M 77 =) °lg
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The integrand does not depend at all on ¥ . This does not mean,

(59)

however, that we get a constant spectrum because the region R

of integration depends on \¢ . It is the region R which we have
to discuss now. The root in the denominator of the integrand re-
presents the velocity of the centre-of-mass (see equation (19) ).
If g is given, the maximum and minimum values which "9~ can have

are
> \\_._,..__,
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This may be written as
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where a,b,c,d are positive constants:
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b and 4 depend only on the masses involved. C may be called
the mean square velocity of the particles A and B. Usually we
shall have a ) c.

2

Equation (61) can be solved for g7,

2 (6d)i e (caff) 2 2o (Befesebe) - 6o
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In other words this means that evaluating the integral (59)
for a given energy E, (i.e. for given 1) we have to vary
g2 from gz_ to gi , with the additional restriction, however,

that
'qu‘UOE)‘ < ‘j < Uoa+ Uon (64)

It proves useful to consider these conditions in the g2 - L‘»—z o

plane (figure 1). In this plane equation (61) or (63) is repre-
sented by an ellipse with inclined axis. The region from which
we get particles is shaded in figure 1. In general the line

92 = (’L(OA +uoa)iiesbélow the point A of the ellipse. The values

of s for g = Ugs T Uog are
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. . . 2 L
and in this case the line g“ = (Mo, +Uop |

goes through the point A. The inclination of the ellipse depends on
the ratio
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If @g74it is inclined towards the right, otherwise if 4%¥‘54
it is inclined towards the left. The coordinates of the point B
depend on the constants a,b,c,d such that B lies below the
’L’JL—axis if a > c¢, which is the case if Q > XT. This is the
situation plotted in figure 1, while figure 2 corresponds

to the other case, which is less interesting. As we shall see
immediately, the two cases correspond to different types of spectra.

Considering figure 1 we see that there are no particles below

and above certain energies corresponding to points R and S

of figure 1. Between points T and U the spectrum does not depend
on U (or Ec) because the limits of integration do not depend on -~
in this region and because (as we saw above) the integrand does

not depend on W either. The points R,S,T,U thus define the
spectrum which is plotted schematically in figure 3. The velocities
corresponding to R,S,T,U can be calculated from equation (61) by
putting g2 = Cum.ttu%)% One finds the total width of the spectrum,
expressed in terms of v,

M Uos + Mg o
(A"u = ) AT T e
folal Mat MG - (67)

and the width of the plateau

\7MA140A*‘1”‘$7A°BI
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Qﬁqﬂtotal is twice the maximum value of s and (21?Aﬂﬁkuu
is twice its minimum value.
If
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(1119 plateau disappears, and we get the spectrum of flgure 4.
Spectra of this type have been computed for the d(d,n) He

reaction and can be found in /1/. This spectrum has a peak at

*1 _
/\9_ \sz-'. WA ImD /WA'fWJ %A = v2+ 7474777)14 2.
Wem, ('m +my 0 MM, o4 (70)

and the derivatives of the spectrum are finite at this peak.

The derivatives of the spectrum in both cases, figure 3 and
figure 4, are zero at R and at S if Z{OA= MOB'

If the point B liesabove the v -axis as in figure 2, the
spectrum may have a somewhat different shape. There are
several cases which we could distinguish. In one of the two
wings of the spectrum or in both wings there may be an
additional singularity, which would cause a discontinuity in
the derivative of the spectrum. For the case of figure 2 a
spectrum like that of figure 5 would be obtained.

3e. Two-dimensional monoenergetic velocity distributions

For this case
'R Mg 9 G(‘T)lef
J0dE, rS(efd)mcﬂmgj N 9= (b 1 {{u,4+u,,8 jf 9e-q. f :7 (71)

where (see equations (62))

/6+d=ﬁ(_/y/ml+w">%-f1—

M w, +M Mt M (72)

9+ and 9_ are different from the 9+ ana ﬂ_h of the
preceding section, at least in general, because the angle of

observation, o , enters the problem (o is the angle between

/
the axis and the direction of observation).
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Equation (60) of the preceding section has now to be replaced by

”&: - Vwcz. saosu + V?ZM—Z;E: VA+ sz + vC- ij 3

and equation (63) by

(73)
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where
A = A ~ CIled_
B = 4 + dwn’x
C = C sinx (75)
D = d Sintx

The problem is thus reduced to the problem treated in the last
section if we just replace a,b,c,d by A,B,C,D, which depend on « .
Thus, we can obtain the spectra in a very similar manner . We

have to take into account, however, the singularities of the inte-
grand in our integral (71) . The integrand is singular along all

the boundary of the admissible regions of integration and imaginary

outside.

The ellipse of figure 6 depends on ©4 and it shrinks if ™ becomes
smaller. It shrinks to a line from D to A for o~ = O, because in
this case

0t - st- (a-c) ¥ Brd)g®

(76)




i.e. 19 is a unique function of g in this limit and only

pairs of particles with the corresponding relative velocity g
contribute to the spectrum at 8 . The points A and D are fixed,
i.e. their position does not depend onos ., B and C depend on &
in such a way that B moves towards A and C towards D as &

tends to zero. This is the shrinking process just mentioned.
During this process the point B crosses the Wl-axis and this

may cause very strange spectra. If, as we always assume,a » C

(Q j? kT), B crosses the axis for a very small angle only, which
is to the order of magnitude given by

K~

= (77)
¢

Thus, the usual situation is that described by figure 6, which
allows us to construct the spectrum of figure 7, and which is
essentially defined by the properties of the integral (71) at the
points R,S,T,U. At each of these points two of the roots in the
denominator are zero.

The integral is, however, singular at T and U only, while at

R and S the divergence of the integrand is compensated by the
fact that the regions of integration also disappear. This is due
to the fact that the integral

za
dx* _
fa---cl' (78)
i (e \(Cﬁ_x’-
is finite. The spectrum is thus finite at R and S, i.e. it starts

and ends with jumps, which are (equation (78) is used to inte-
grate (71))
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2
where g2 = ( Uosa- Uog ) and U is either of the corresponding
two values thus obtained from equation (73) . g_ is defined by
equation (74 ).

The width of the spectrum and the distance between the two
singularities are easily obtained and differ from the three-
dimensional results (67) and (68) only by an expected factor Smoc,

For Uoy = er. the jumps at R and S are zero and if M Uy =g Upg
the two singularities join into one. For reactions between
identical particles both conditions are fulfilled, and we
obtain spectra as computed for the d-d reaction in /1/.

Spectra as shown by figure 7 are obtained only for sufficiently
large angles o< (see (77)). For &= O the spectrum is schemati-
cally given in figure 8. As we have already seen, the ellipse
shrinks into a line and along this line g_ =g, = g, i.e.

two roots in the denominator of the integrand are zero. Due

to equation (78) the integral does not diverge, however, except
for the ends of the spectrum. At these ends a third root is zero
(if Uop #+ Uog ) » and the spectrum is divergent (but still, as it has
to be, integrable). The width of the spectrum is

A'\?L B Z( (@-{- o/) Uos Uoi (80)

If Uga =Z/og one divergence disappears, and one gets the
shape of the spectrum given in figure 9.

The transition from large angle spectra (like figure 7) to the
X = 0 spectrum (figure 8) is rather complicated, and it will not
be discussed in detail. Figure lo gives examples of such inter-
mediate spectra.

Up to now we have facitly assumed that both velocities 1JOA
and’liag are different from zero. If one of them is zero

( uoB/ for example,) we get spectra of the same type as
figure 8 with a width




m o, U, .
_/_\’\9 = 2 27 Sine (81)
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This may be considered as a special case of figure 7, with
the difference, however, that equation(8l) is correct for
any angle &<

The examples given should be sufficient and other cases can

be treated analogously. The strange spectra appearing are, from
a practical point of view, not very important anyway. For
practical diagnostic purposes only the large angle type of
spectrum (figure 7) is of interest.

4, Conclusion

By considering some typical model velocity distributions
(Maxwillians and monoenergetic distribution) we have shown

that the particles generated by nuclear reactions in energetic
plasmas have very typical energy spectra. The measurement of
such spectra could be an interesting tool of plasma diagnostics.
A very good method would be to addtriium to a deuterium plasma.
The d-t reaction has a very large cross section and would
produce many neutrons (14 MeV) and X-particles (3.5 MeV), both
with a half-width of about 177 {i%ﬂ keV (for Maxwellian
distributions, kT in keV) whichshould be measurable for high
energy plasmas. Thereis also a very remarkable difference be-
tween the almost Gaussian spectrum of Maxwellian plasmas and the
spectra of monoenergetic plasmas (as they may be important for
the early phases of strong 6-pinches, where one could have
two-dimensional monoenergetic distributions). Measurements of
the angular dependence of the spectrum and its shape could
certainly supply very useful information and could perhaps help
to clarify the processes going on in a pinch plasma or in a

plasma focus, for instance.
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Figure 6 Construction of spectrum for two-dimensional mono-

energetic distributions
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Figure 10 Two examples of spectra for two-dimensional mono-

energetic distributions at small angles (a) :
qu*uoB (b) : Moa=Upg In both cases 'YVIA’UDA#.— Mg Uop
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